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Formulation of the problem

Given a nonsingular matrix A and vectors b and c.

We want to approximate

c∗
A

−1b .

Equivalently, we look for an approximation to

c∗x such that Ax = b .
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Motivation

Approximation of the jth component of the solution

i.e., we want to approximate eT
j A−1b.

Signal processing (the scattering amplitude)

b and c represent incoming and outgoing waves, respectively,
and the operator A relates the incoming and scattered fields
on the surface of an object,

Ax = b determines the field x from the signal b. The signal is
received on an antenna c. The signal received by the antenna
is then c∗x. The value c∗x is called the scattering amplitude.

Optimization

Nuclear physics, quantum mechanics, other disciplines
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Krylov subspace methods approach
Projection of the original problem onto Krylov subspaces

Kn(A, b) = span{b, Ab, . . . An−1b} .
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Krylov subspace methods approach
Projection of the original problem onto Krylov subspaces

Kn(A, b) = span{b, Ab, . . . An−1b} .

A possible approach: Compute xn using a Krylov subspace method,

c∗A−1b = c∗x ≈ c∗xn .

The approximation c∗xn can be highly inefficient!
How to approximate c∗x without looking for xn?

We need a theoretical background
(find the best possible approximation in some sense).

Efficient numerical computation and justification
of the approximation in finite precision arithmetic.
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Outline

1 Symmetric, positive definite case

2 Matching moments

3 Approximation of the bilinear form c∗A−1b

4 Numerical experiments
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The CG method
Let A be symmetric, positive definite

Solve Ax = b .

input A, b

x0 = 0
r0 = p0 = b

for k = 0, 1, . . .

αk = ‖rk‖2

p∗

k
Apk

,

xk+1 = xk + αk pk ,
rk+1 = rk − αk Apk ,

βk+1 =
‖rk+1‖2

‖rk‖2 ,

pk+1 = rk+1 + βk+1 pk ,

end
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The Lanczos algorithm
Let A be symmetric

Compute orthonormal basis of Kn(A, b).

input A, b

v1 = b/‖b||, δ1 = 0 ,

for k = 1, 2, . . .

γk = vT
k (Avk − δkvk−1) ,

w = Avk − γkvk − δkvk−1 ,
δk+1 = ‖w‖ ,

vk+1 = w/δk+1 ,

end
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The Lanczos algorithm
Let A be symmetric

Compute orthonormal basis of Kn(A, b).

input A, b

v1 = b/‖b||, δ1 = 0 ,

for k = 1, 2, . . .

γk = vT
k (Avk − δkvk−1) ,

w = Avk − γkvk − δkvk−1 ,
δk+1 = ‖w‖ ,

vk+1 = w/δk+1 ,

end

The Lanczos algorithm is represented by

AVn = VnTn + δn+1vn+1eT
n ,

where V∗
nVn = I and Tn = V∗

nAVn is tridiagonal.
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CG versus Lanczos
Let A be symmetric, positive definite

Tn =










γ1 δ2

δ2
. . .

. . . δn

δn γn










= Ln LT
n

where

Ln =











1√
α0

√
β1

α0

. . .

. . .
. . .√
βn−1

αn−2

1√
αn−1











.

The CG approximation is the given by

Tnyn = ‖b‖e1, xn = x0 + Vnyn .
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Distribution function ω(λ)
Without loss of generality ‖b‖ = 1

(λi, ui) . . . eigenpair of A, ωi = (bT ui)
2.

...

0

1

ω1

ω2

ω3

ω4

ωN

ζ λ1 λ2 λ3
. . . . . . λN ξ
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Distribution function ω(λ)
Without loss of generality ‖b‖ = 1

(λi, ui) . . . eigenpair of A, ωi = (bT ui)
2.

...

0

1

ω1

ω2

ω3

ω4

ωN

ζ λ1 λ2 λ3
. . . . . . λN ξ

∫ ξ

ζ
f(λ) dω(λ) =

N∑

i=1

ωi f(λi) .
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The Conjugate gradient method and Gauss Quadrature
Symmetric, positive definite case

At any iteration step n, CG (implicitly) determines weights and
nodes of the n-point Gauss quadrature

∫ ξ

ζ
f(λ) dω(λ) =

n∑

i=1

ω
(n)
i f(θ

(n)
i ) + Rn(f) .

Tn . . . the corresponding Jacobi matrices,

θ
(n)
i . . . eigenvalues of Tn, ω

(n)
i . . . scaled and squared first

components of the normalized eigenvectors of Tn.

11



The Conjugate gradient method and Gauss Quadrature
Symmetric, positive definite case

At any iteration step n, CG (implicitly) determines weights and
nodes of the n-point Gauss quadrature

∫ ξ

ζ
f(λ) dω(λ) =

n∑

i=1

ω
(n)
i f(θ

(n)
i ) + Rn(f) .

Tn . . . the corresponding Jacobi matrices,

θ
(n)
i . . . eigenvalues of Tn, ω

(n)
i . . . scaled and squared first

components of the normalized eigenvectors of Tn.

CG matches the first 2n moments, f(λ) = λk, k = 0, . . . , 2n − 1

∫ ∞

0
λk dω(λ) =

n∑

i=1

ω
(n)
i (θ

(n)
i )k =

∫ ∞

0
λk dω(n)(λ) .

Moment problem:
ω(λ) → ω(n)(λ) .
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CG and Gauss Quadrature for f(λ) = λ−1

Symmetric, positive definite case

For f(λ) ≡ λ−1 the formula takes the form

∫ ξ

ζ
λ−1 dω(λ) =

n∑

i=1

ω
(n)
i

θ
(n)
i

+ Rn(λ−1)

or, equivalently [Golub & Strakoš ’94],

‖x‖2
A

‖b‖2
= n-th Gauss quadrature +

‖x − xn‖2
A

‖b‖2
.
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CG and Gauss Quadrature for f(λ) = λ−1

Symmetric, positive definite case

For f(λ) ≡ λ−1 the formula takes the form

∫ ξ

ζ
λ−1 dω(λ) =

n∑

i=1

ω
(n)
i

θ
(n)
i

+ Rn(λ−1)

or, equivalently [Golub & Strakoš ’94],

‖x‖2
A

‖b‖2
= n-th Gauss quadrature +

‖x − xn‖2
A

‖b‖2
.

We can approximate

‖x‖2
A = xT Ax = bT x = bT A−1b

using Gauss quadrature.
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CG and Gauss Quadrature for f(λ) = λ−1

Mathematically equivalent formulas (multiplied by ‖b‖2)

Gauss Quadrature based formula:

‖x‖2
A = ‖b‖2 Cn + ‖x − xn‖2

A ,

Cn is continued fraction corresponding to ω(n)(λ)
[Golub & Strakoš ’94, Golub & Meurant ’94, ’97, ’10]

Formulas based on algebraic manipulations

‖x‖2
A = bT xn + ‖x − xn‖2

A

‖x‖2
A =

n−1∑

i=0

αi‖ri‖2 + ‖x − xj‖2
A.

The first one derived by [Warnick ’00], the second one independently
by [Hestenes & Stiefel ’52, Deufelhard ’93, Axelsson & Kaporin ’01, Strakoš & T. ’02]
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CG and the approximation of bT
A

−1b
Mathematically equivalent approximations

Approximation based on the formula

‖x‖2
A = ‖b‖2 n-th Gauss quadrature + ‖x − xn‖2

A .

If ‖x − xn‖2
A

is small then

bT A−1b ≈ ‖b‖2 n-th Gauss quadrature
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CG and the approximation of bT
A

−1b
Mathematically equivalent approximations

Approximation based on the formula

‖x‖2
A = ‖b‖2 n-th Gauss quadrature + ‖x − xn‖2

A .

If ‖x − xn‖2
A

is small then

bT A−1b ≈ ‖b‖2 n-th Gauss quadrature

Mathematically equivalent approximations:

‖b‖2 Cn, bT xn and
n−1∑

i=0

αi‖ri‖2.
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Finite precision arithmetic
CG behavior

Orthogonality is lost, convergence is delayed!
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Relations need not hold in finite precision arithmetic!
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Rounding error analysis
Strakoš & T. 2002

Do the relations hold for computed quantities?

1

‖x‖2
A = bT xn + ‖x − xn‖2

A

does not hold for computed quantities - its validity is based on
preserving global orthogonality among CG residuals.
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Rounding error analysis
Strakoš & T. 2002

Do the relations hold for computed quantities?

1

‖x‖2
A = bT xn + ‖x − xn‖2

A

does not hold for computed quantities - its validity is based on
preserving global orthogonality among CG residuals.

2

‖x‖2
A =

n−1∑

i=0

αi‖ri‖2 + ‖x − xn‖2
A.

holds also for computed quantities - it is based on preserving
local orthogonality between rn+1 and pn.
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Behavior in finite precision arithmetic

bT xn versus
n−1∑

i=0

αi‖ri‖2
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Symmetric, positive definite case
Summary

Theoretical background: Gauss quadrature

bT A−1b

‖b‖2
= n-th Gauss quadrature +

‖x − xn‖2
A

‖b‖2
.
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Symmetric, positive definite case
Summary

Theoretical background: Gauss quadrature

bT A−1b

‖b‖2
= n-th Gauss quadrature +

‖x − xn‖2
A

‖b‖2
.

If c = b, the best way how to approximate bT A−1b is to use the
Hestenes-Stiefel estimate

bT A−1b ≈
n−1∑

i=0

αi‖ri‖2 .

We have seen that due to numerical instabilities, the explicit
numerical computation of c∗xn can be highly inefficient.
[Strakoš & T. ’02, ’05]

How to generalize ideas from the SPD case to a general case?
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Outline

1 Symmetric, positive definite case

2 Matching moments

3 Approximation of the bilinear form c∗A−1b

4 Numerical experiments
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CG, Gauss Quadrature and Matching Moments
Overview

CG, Lanczos,
Jacobi matrices

Moment problem
matching moments

Gauss Quadrature
nodes, weights
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Matching moments
Matrix formulation, without loss of generality ‖b‖ = 1

How to express moments in terms of A, b and Tn?

∫ ∞

0
λk dω(λ) =

N∑

i=1

ωj (λj)k = b∗ Ak b ,

∫ ∞

0
λk dω(n)(λ) =

n∑

i=1

ω
(n)
i (θ

(n)
i )k = eT

1 Tk
n e1 .
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Matching moments
Matrix formulation, without loss of generality ‖b‖ = 1

How to express moments in terms of A, b and Tn?

∫ ∞

0
λk dω(λ) =

N∑

i=1

ωj (λj)k = b∗ Ak b ,

∫ ∞

0
λk dω(n)(λ) =

n∑

i=1

ω
(n)
i (θ

(n)
i )k = eT

1 Tk
n e1 .

Matching the first 2n moments therefore means

b∗ Ak b ≡ eT
1 Tk

n e1 , k = 0, 1, . . . , 2n − 1 .
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Model reduction via matching moments
Another view of the CG and Lanczos algorithms

Let ‖b‖ = 1.

CG (Lanczos) reduces for A HPD at the step n the original model

Ax = b to Tnyn = e1
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Model reduction via matching moments
Another view of the CG and Lanczos algorithms

Let ‖b‖ = 1.

CG (Lanczos) reduces for A HPD at the step n the original model

Ax = b to Tnyn = e1

such that 2n moments are matched,

b∗Akb = eT
1 Tk

ne1, k = 0, 1, . . . , 2n − 1 .
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The Vorobyev moment problem
Vorobyev ’58, ’65, popularized by Brezinski ’97, Strakoš ’08

Find a linear HPD operator An on Kn(A, v) such that

An v = A v,

A2
n v = A2 v,

...

An−1
n v = An−1 v,

An
n v = QnAn v ,

where Qn projects onto Kn(A, b) orthogonally to Kn(A, b).
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The Vorobyev moment problem
Vorobyev ’58, ’65, popularized by Brezinski ’97, Strakoš ’08

Find a linear HPD operator An on Kn(A, v) such that

An v = A v,

A2
n v = A2 v,

...

An−1
n v = An−1 v,

An
n v = QnAn v ,

where Qn projects onto Kn(A, b) orthogonally to Kn(A, b).

Moment problem:
ω(λ) → ω(n)(λ) .

Vorobyev moment problem:

A, v → An, v .
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Lanczos and the Vorobyev moment problem
Model reduction via matching moments

Let Vn and Tn are matrices from the Lanczos algorithm. Then

Qn = VnV∗
n ,

An = VnTnV∗
n.

We can identify Lanczos with the Vorobyev moment problem.
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Lanczos and the Vorobyev moment problem
Model reduction via matching moments

Let Vn and Tn are matrices from the Lanczos algorithm. Then

Qn = VnV∗
n ,

An = VnTnV∗
n.

We can identify Lanczos with the Vorobyev moment problem.

Using the Vorobyev moment problem one can show [Strakoš ’08]

b∗Akb = b∗Ak
nb = e∗

1Tk
ne1, k = 0, . . . , 2n − 1 .

The matching moment property of Lanczos (CG) can be shown
without using Gauss Quadrature!
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Lanczos and the Vorobyev moment problem
Model reduction via matching moments

Let Vn and Tn are matrices from the Lanczos algorithm. Then

Qn = VnV∗
n ,

An = VnTnV∗
n.

We can identify Lanczos with the Vorobyev moment problem.

Using the Vorobyev moment problem one can show [Strakoš ’08]

b∗Akb = b∗Ak
nb = e∗

1Tk
ne1, k = 0, . . . , 2n − 1 .

The matching moment property of Lanczos (CG) can be shown
without using Gauss Quadrature!

This view of Krylov subspace methods appears to be useful when
generalizing the ideas from the HPD case.
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Vorobyev moment problem
General case

Find a linear operator An on Kn(A, v) such that

An v = A v,

A2
n v = A2 v,

...

An−1
n v = An−1 v,

An
n v = QnAn v ,

where Qn is a given linear projection operator.
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Vorobyev moment problem
General case

Find a linear operator An on Kn(A, v) such that

An v = A v,

A2
n v = A2 v,

...

An−1
n v = An−1 v,

An
n v = QnAn v ,

where Qn is a given linear projection operator.

Some Krylov subspace methods can be identified
with the Vorobyev moment problem.

Useful formulation for understanding approximation properties
of Krylov subspace methods.
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Non-Hermitian Lanczos

Given a nonsingular A, v and w.

Non-Hermitian Lanczos algorithm is represented by

AVn = VnTn + δn+1vn+1eT
n ,

A∗Wn = WnT∗
n + η∗

n+1wn+1eT
n ,

where W∗
nVn = I and Tn = W∗

nAVn is tridiagonal,

Tn =










γ1 η2

δ2 γ2
. . .

. . .
. . . ηn

δn γn










.
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Arnoldi algorithm

Given a nonsingular A and v.

Arnoldi algorithm is represented by

AVn = VnHn + hn+1,nvn+1eT
n ,

where V∗
nVn = I, and Hn =V∗

nAVn is upper Hessenberg,

Hn =










h1,1 h1,2 . . . h1,n

h2,1 h2,2
. . .

...
. . .

. . . hn−n,n

hn,n−1 hn.n










.
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Non-Hermitian Lanczos
Vorobyev moment problem, matching moments, model reduction

Define Qn: it projects onto Kn(A, v) orthogonally to Kn(A∗, w).
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Non-Hermitian Lanczos
Vorobyev moment problem, matching moments, model reduction

Define Qn: it projects onto Kn(A, v) orthogonally to Kn(A∗, w).

Then

Qn = VnW∗
n ,

An = VnTnW∗
n .

Matching moments property of Non-Hermitian Lanczos:
[Gragg & Lindquist ’83, Villemagne & Skelton ’87]

[Gallivan & Grimme & Van Dooren ’94, Antoulas ’05]

[a simple proof using the Vorobyev moment problem - Strakoš ’08]

w∗Akv = w∗Ak
nv = e∗

1Tk
ne1, k = 0, . . . , 2n − 1 .
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Non-Hermitian Lanczos
Vorobyev moment problem, matching moments, model reduction

Define Qn: it projects onto Kn(A, v) orthogonally to Kn(A∗, w).

Then

Qn = VnW∗
n ,

An = VnTnW∗
n .

Matching moments property of Non-Hermitian Lanczos:
[Gragg & Lindquist ’83, Villemagne & Skelton ’87]

[Gallivan & Grimme & Van Dooren ’94, Antoulas ’05]

[a simple proof using the Vorobyev moment problem - Strakoš ’08]

w∗Akv = w∗Ak
nv = e∗

1Tk
ne1, k = 0, . . . , 2n − 1 .

Model reduction

A, v, w → Tn, e1, e1 .
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Arnoldi algorithm
Vorobyev moment problem, matching moments, model reduction

Define Qn: it projects onto Kn(A, v) orthogonally to Kn(A, v).

Then

Qn = VnV∗
n ,

An = VnHnV∗
n .

Matching moments property of Arnoldi:

w∗Akv = w∗Ak
nv = t∗

nHk
ne1, k = 0, . . . , n − 1 ,

w is given, tn = V∗
nw.

Model reduction

A, v, w → Hn, e1, tn .
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Approximation of c∗
A

−1b
Theoretical background - general framework, Strakoš & T. ’09

Vorobyev moment problem: A → An

Define approximation:

c∗A−1b ≈ c∗A−1
n b

A−1
n is the matrix representation of the inverse of the reduced

order operator An which is restricted onto Kn(A, b),
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Define approximation:

c∗A−1b ≈ c∗A−1
n b

A−1
n is the matrix representation of the inverse of the reduced

order operator An which is restricted onto Kn(A, b),

A−1
n = VnT−1

n W∗
n in Non-Hermitian Lanczos,

A−1
n = VnH−1

n V∗
n in Arnoldi.
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n is the matrix representation of the inverse of the reduced

order operator An which is restricted onto Kn(A, b),

A−1
n = VnT−1
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n in Arnoldi.

Questions:

How to compute c∗A−1
n b efficiently?

Relationship to the existing approximations?
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Approximation of c∗
A

−1b
Theoretical background - general framework, Strakoš & T. ’09

Vorobyev moment problem: A → An

Define approximation:

c∗A−1b ≈ c∗A−1
n b

A−1
n is the matrix representation of the inverse of the reduced

order operator An which is restricted onto Kn(A, b),

A−1
n = VnT−1

n W∗
n in Non-Hermitian Lanczos,

A−1
n = VnH−1

n V∗
n in Arnoldi.

Questions:

How to compute c∗A−1
n b efficiently?

Relationship to the existing approximations?

We concentrate only to non-Hermitian Lanczos approach.
31



Non-Hermitian Lanczos approach

Define

v1 =
b

‖b‖ , w1 =
c

c∗v1
, i.e. w∗

1v1 = 1 .

Then

c∗A−1
n b = c∗VnT−1

n W∗
nb = (c∗v1) ‖b‖ (T−1

n )1,1 .
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Non-Hermitian Lanczos approach

Define

v1 =
b

‖b‖ , w1 =
c

c∗v1
, i.e. w∗

1v1 = 1 .

Then

c∗A−1
n b = c∗VnT−1

n W∗
nb = (c∗v1) ‖b‖ (T−1

n )1,1 .

Let x0 = 0. We also know that xn = ‖b‖VnT−1
n e1 is the

approximate solution computed via BiCG. Therefore,

c∗A−1
n b = c∗‖b‖VnT−1

n W∗
nVn

︸ ︷︷ ︸

I

e1 = c∗xn .
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Non-Hermitian Lanczos approach

Define

v1 =
b

‖b‖ , w1 =
c

c∗v1
, i.e. w∗

1v1 = 1 .

Then

c∗A−1
n b = c∗VnT−1

n W∗
nb = (c∗v1) ‖b‖ (T−1

n )1,1 .

Let x0 = 0. We also know that xn = ‖b‖VnT−1
n e1 is the

approximate solution computed via BiCG. Therefore,

c∗A−1
n b = c∗‖b‖VnT−1

n W∗
nVn

︸ ︷︷ ︸

I

e1 = c∗xn .

We used the global biorthogonality !
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The BiCG method

Simultaneous solving of

Ax = b , A∗y = c .

input A, b, c

x0 = y0 = 0
r0 = p0 = b, s0 = q0 = c

for n = 0, 1, . . .

αn = s∗

nrn

q∗

nApn
,

xn+1 = xn + αn pn , yn+1 = yn + α∗
n qn ,

rn+1 = rn − αn Apn , sn+1 = sn − α∗
n A∗qn ,

βn+1 =
s∗

n+1
rn+1

s∗
nrn

,

pn+1 = rn+1 + βn+1 pn , qn+1 = sn+1 + β∗
n+1 qn

end
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An efficient approximation based on the BiCG method
How to compute c∗

A
−1
n b in BiCG without using the global biorthogonality?

Using local biorthogonality we can show that

s∗
jA−1rj − s∗

j+1A−1rj+1 = αjs∗
jrj .
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An efficient approximation based on the BiCG method
How to compute c∗

A
−1
n b in BiCG without using the global biorthogonality?

Using local biorthogonality we can show that

s∗
jA−1rj − s∗

j+1A−1rj+1 = αjs∗
jrj .

Consequently,

c∗A−1b =
n−1∑

j=0

αjs
∗
jrj + s∗

nA−1rn .

Moreover, it can be shown that (using global biorthogonality) that

c∗A−1b = c∗xn + s∗
nA−1rn .

Finally,

c∗A−1
n b = c∗xn =

n−1∑

j=0

αjs
∗
jrj ≡ ξB

n .

34



Approximations based on the BiCG method
and possible troubles in finite precision arithmetic

It holds that

c∗A−1b =
n−1∑

j=0

αjs∗
jrj + s∗

nA−1rn
︸ ︷︷ ︸

error ∼ ‖y−yn‖‖rn‖

.

It can be shown that

c∗A−1b = c∗xn + y∗
nrn + s∗

nA−1rn
︸ ︷︷ ︸

error ∼ ‖yn‖‖rn‖

.

In exact arithmetic y∗
nrn = 0.

If the global biorthogonality is lost, one can expect that

|y∗
nrn| ∼ ‖yn‖‖rn‖ .
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Approximations based on the BiCG method
Mathematically equivalent approximations ξB

n and c∗xn, ς ≡ c∗
A

−1b
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−15
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−10

10
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0

iteration number

TE2001

 

 

| ς − ξ
n
B |

| ς − ξ
n
B (reo) |

| ς − c* x
n
 |

| y
n
*  r

n
 |

|c∗A−1b − c∗xn| ≅ |y∗
nrn + s∗

nA−1rn| ,

|c∗A−1b − ξB
n | ≅ |s∗

nA−1rn| .
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Yet another approach
Hybrid BiCG methods

We know that

c∗A−1
n b =

n−1∑

j=0

αj s∗
jrj and s∗

jrj = (c∗b)
j−1
∏

k=0

βk .
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Yet another approach
Hybrid BiCG methods

We know that

c∗A−1
n b =

n−1∑

j=0

αj s∗
jrj and s∗

jrj = (c∗b)
j−1
∏

k=0

βk .

In hybrid BiCG methods like CGS, BiCGStab, BiCGStab(ℓ),
the BiCG coefficients are available, i.e. we can compute the
approximation c∗A−1

n b during the run of these method.

Question: Hybrid BiCG methods produce approximations xn,
better than xn produced by BiCG.

Is c∗xn a better approximation of c∗A−1b than c∗xn?

No. We showed that mathematically [Strakoš & T. ’09],

c∗xn = c∗xn.
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Summary (non-Hermitian Lanczos approach)
How to compute c∗

A
−1
n b?

Algorithm of choice:

non-Hermitian Lanczos

BiCG

hybrid BiCG methods

Way of computing the approximation:

c∗xn

(c∗v1) ‖b‖ (T−1
n )1,1

from the BiCG coefficients, or, in BiCG using

ξB

n ≡
n−1∑

j=0

αj s∗
jrj .
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Preconditioning
General case

Let PL and PR be a left and a right preconditioner. Then

c∗A−1b = ( P−∗
R

c
︸ ︷︷ ︸

ĉ

)∗ ( P−1
L

AP−1
R

)−1

︸ ︷︷ ︸

Â−1

( P−1
L

b
︸ ︷︷ ︸

b̂

) .

The approximation techniques can be applied to the problem

ĉ∗Â−1b̂ .

It is obvious that Â need not be formed explicitly.
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Preconditioning
General case

Let PL and PR be a left and a right preconditioner. Then

c∗A−1b = ( P−∗
R

c
︸ ︷︷ ︸

ĉ

)∗ ( P−1
L

AP−1
R

)−1

︸ ︷︷ ︸

Â−1

( P−1
L

b
︸ ︷︷ ︸

b̂

) .

The approximation techniques can be applied to the problem

ĉ∗Â−1b̂ .

It is obvious that Â need not be formed explicitly.

It is easier to derive the preconditioned algorithm
for approximating the bilinear form c∗A−1b than
the preconditioned algorithm for solving linear systems.
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General case
Summary

Theoretical background: Model reduction via matching moments .

Several Krylov subspace methods (Lanczos, Arnoldi) can be
identified with the Vorobyev moment problem A → An .

Approximation:
c∗A−1b ≈ c∗A−1

n b .
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General case
Summary

Theoretical background: Model reduction via matching moments .

Several Krylov subspace methods (Lanczos, Arnoldi) can be
identified with the Vorobyev moment problem A → An .

Approximation:
c∗A−1b ≈ c∗A−1

n b .

Promising approaches:

BiCG and c∗A−1b ≈
n−1∑

j=0

αjs∗
jrj ,

Arnoldi and c∗A−1b ≈ ‖b‖ t∗
nH−1

n e1 ,

where tn = V∗
nc.
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Outline

1 Symmetric, positive definite case

2 Matching moments

3 Approximation of the bilinear form c∗A−1b

4 Numerical experiments
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Numerical experiments
Diffraction of light on periodic structures, RCWA method

[Hench & Strakoš ’08]

A x ≡









−I I ei
√

C̺ 0

YI

√
C −

√
Cei

√
C̺ 0

0 ei
√

C̺ I −I

0
√

Cei
√

C̺ −
√

C −YII









x = b ,

YI, YII, C ∈ C(2M+1)×(2M+1), ̺ > 0, M is the discretization
parameter representing the number of Fourier modes used for
approximation of the electric and magnetic fields as well as the
material properties.
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Numerical experiments
Diffraction of light on periodic structures, RCWA method

[Hench & Strakoš ’08]

A x ≡









−I I ei
√

C̺ 0

YI

√
C −

√
Cei

√
C̺ 0

0 ei
√

C̺ I −I

0
√

Cei
√

C̺ −
√

C −YII









x = b ,

YI, YII, C ∈ C(2M+1)×(2M+1), ̺ > 0, M is the discretization
parameter representing the number of Fourier modes used for
approximation of the electric and magnetic fields as well as the
material properties.

Typically, one needs only the dominant (M + 1)st component

e∗
M+1A−1b.

In our experiments M = 20, i.e. A ∈ C164×164. [Strakoš & T. ’10]

42



Approximations based on the BiCG method

bT xn versus
n−1∑

j=0

αjs∗
jrj
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Non-Hermitian Lanczos approach
Mathematically equivalent approximations based on hybrid BiCG methods
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The BiCGStab and CGS approximations are significantly more
affected by rounding errors than the BiCG approximations.
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Non-Hermitian Lanczos approach
Solving the system Ax = b
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Hybrid BiCG methods can be more efficient than BiCG when
approximating the solution of Ax = b.
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Non-Hermitian Lanczos approach
Mathematically equivalent approximations based on hybrid BiCG methods
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| ς − c* x
k/8

 | BiCGStab (4)

BiCG is usually more efficient than hybrid BiCG methods when
approximation the bilinear form c∗A−1b.
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Different approaches with preconditioning
TE polarization, 20 slabs, A ∈ C

1722×1722
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Different approaches with preconditioning
AF23560: from set AIRFOIL, from the NEP Collection
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Conclusions

Some Krylov subspace methods can be seen as model
reduction via matching moments.
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Conclusions

Some Krylov subspace methods can be seen as model
reduction via matching moments.

Generalization of the HPD case: Via Vorobyev moment
problem → very natural and general.
- no assumptions on A, based on approximation properties

We proved mathematical equivalence of the existing
approximations based on Non-Hermitian Lanczos.

Preferable approximation

ξB

n ≡
n−1∑

j=0

αj s∗
jrj .

It is simple and numerically better justified.

In finite precision arithmetic, the relations need not hold.
A justification is necessary (e.g. local biorthogonality).
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More details

More details can be found at

http://www.karlin.mff.cuni.cz/˜strakos/

http://www.cs.cas.cz/tichy
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Thank you for your attention!
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